《清史稿》

下载本书

添加书签

清史稿- 第145部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
  四率辛角正切
  一率半径
  二率辛角馀弦
  三率甲辛弧正切
  四率辛辰弧正切
  一率半径
  二率辛角正弦
  三率甲辛弧正弦
  四率甲辰弧正弦
  又设太阳距秋分前三十度,黄道实行为八宫初度,求午正初刻黄平象限诸数。乃以辛点太阳实行当正午,其申点为秋分,而在午东,壬为春分,未为夏至,子乙未为过极至经圈,亦自黄极子点过天顶,作子甲卯弧本时黄平象限,而在午西。法用辛戊申正弧三角形,此形戊为直角,申角为黄赤交角,申辛黄道弧亦为三十度,求得申戊赤道同升度,亦为二十七度五十四分一十秒。乃与壬申赤道之半周相减,得壬戊弧五宫二度五分五十秒,为本时春分距午后赤道度。变时得十时八分二十三秒,即本时春分距午时分也。次用辛辰甲正弧三角形,辰为直角,其辛角黄道赤经交角及甲辛弧太阳距天顶,皆与前图之度等。求得辛辰弧黄平象限距午正黄道度,亦为十度四十七分二十八秒。与辛点八宫初度相减,因黄平象限在午西,故减。得辰点七宫十九度十二分三十二秒,即本时黄平象限之经度。又求得甲辰弧与甲卯象限相减,得辰卯弧,亦为六十三度三十二分四十秒,即本时限距地高,亦当辰寅卯角之度也。

  又设太阳当正午实行距春分前三十度为二宫初度,乃以辛点太阳当午正,则春分壬点在午正之东,申为秋分,丑为冬至,乙子丑为过极至经圈,其子甲卯本时黄平象限亦在午正之东。法用辛戊壬正弧三角形,有戊直角,有壬角黄赤交角,有壬辛黄道弧三十度。求得壬戊赤道弧,亦为二十七度五十四分一十秒。乃与赤道全周相减,得十一宫二度五分五十秒,为本时春分距午后赤道度。变时得二十二时八分二十三秒,即本时春分距午时分也。又求得辛戊弧亦为十一度二十九分三十三秒,为太阳距赤道南纬度,并求得壬辛戊角亦为六十九度二十二分五十一秒,为本时黄道赤经交角。次用辛辰甲正弧三角形,此形有辰直角,有辛角,以甲戊赤道距天顶与辛戊黄赤距度相加,得甲辛弧太阳距天顶五十一度二十四分三十三秒。乃以半径为一率,辛角之馀弦为二率,甲辛弧之正切为三率,求得四率,为黄平象限距午之正切,检表得二十三度四十八分四十秒,即辛辰弧黄平象限距午正之黄道度。与辛点二宫初度相加,得辰点二宫二十三度四十八分四十秒,即本时黄平象限之经度也。又以半径为一率,辛角之正弦为二率,甲辛弧之正弦为三率,求得四率,为甲辰弧黄平象限距天顶之正弦,检馀弦表得四十二度五十九分一秒,即卯辰弧本时限距地高之度也。

  一率半径
  二率辛角馀弦
  三率甲辛弧正切
  四率辛辰弧正切
  一率半径
  二率辛角正弦
  三率甲辛弧正弦
  四率甲辰弧正弧
  又设太阳当午正实行距秋分后三十度为十宫初度,乃以辛点太阳当午正,则申点秋分在午正后,而春分必在午正前,未为夏至,子乙未为过极至经圈,其子甲卯本时黄平象限在午正之西。求法仍用辛戊申正弧三角形,此形边角之度与前图之辛戊壬形同,惟申戊弧所变之一时五十一分三十七秒,乃秋分距午后之时分,是以加赤道半周之十二时,得十三时五十一分三十七秒,始为本时春分距午时分也。次用辛辰甲正弧三角形,此形边与角之度亦与前图之辛辰甲形同,惟因辰点在辛点之西,是以十宫初度内减辛辰弧二十三度四十八分四十秒,得九宫六度十一分二十秒,即本时黄平象限之经度。其辰卯弧限距地高四十二度五十九分一秒,亦与前数相同也。由此则逐度皆以距春、秋分前后各相对之度推之,其求午正太阳距天顶之加减,则以纬南、纬北而分。求黄平象限宫度之加减,则以冬至、夏至为断。盖冬至过午西,黄平象限恆在午正之东,夏至过午西,黄平象限恆在午正之西,此加减所由定也。

  今设太阳黄道经度三宫十六度四十四分,用时为戌正二刻八分十九秒,求春分距午时分及黄平象限宫度、限距地平高度。如申辛壬癸为黄道,交地平于寅,壬为春分,丑为夏至,申为秋分,子乙丑亥为过二极二至经圈。乃自黄极子点过天顶甲点作子甲卯黄道经圈,其黄道適中之辰点,乃在午正之西。今太阳在春分后之未点,当赤道之午点,自子正计之,即用时之时刻。先用未午壬正弧三角形求壬午弧,此形午为直角,有壬角黄赤交角二十三度二十九分,有壬未弧太阳距春分后黄道度十六度四十四分,求得壬午弧十五度二十四分五十八秒,为太阳距春分后赤道度。变时得一小时一分四十秒,与午点用时相加,得二十一小时三十九分五十九秒,为壬点春分距子正后之时分。内减十二时,得九小时三十九分五十九秒,即壬戊弧本时春分距午时分。次用甲戊辛正弧三角形,因壬戊春分距午后之度已过象限,故用申戊辛正弧形。求辛角及辛戊、辛申二弧。此形戊为直角,有申角黄赤交角,有申戊弧秋分距午前时分所变之赤道度三十五度零十五秒,求得戊辛弧十三度五十九分四十秒,为本时正午之黄赤距度。求得申辛戊角七十度五十六分五十八秒,为黄道交子午圈角,即黄道赤经交角。与甲辛辰角为对角,其度等。求得申辛弧三十七度二十一分五十秒,为秋分距午正前黄道度。与申点秋分九宫相减,得七宫二十二度三十八分一十秒,即辛点正午黄道经度。次用甲辰辛正弧三角形求辛辰、甲辰二弧,此形辰为直角,有辛角黄道赤经交角。以甲戊弧京师赤道距天顶三十九度五十五分,内减辛戊正午黄赤距度,得甲辛弧二十五度五十五分二十秒,为本时正午黄道距天顶度,求得辛辰弧九度零五十三秒,为黄平象限距午西之黄道度。与辛点正午黄道经度相减,得辰点七宫十三度三十七分十七秒,即本时黄平象限之经度,并求得甲辰弧二十四度二十四分二十四秒,为黄平象限距天顶之度。与甲卯象限相减,得辰卯弧六十五度三十五分三十六秒,为本时黄平象限距地平之高度,即当辰寅卯角之度也。

  求距限差
  距限差者,乃月距黄平象限之差度也。盖旧法月距限以九十度为率,因黄道丽天,其向随时不同,而出于地平之上者,恆为半周,其適中之点,距地平东西皆九十度。故以九十度之限,以察月在地平之上下,若月距限逾九十度者,为在地平下,遂不入算,然此以黄道为立算之端也。顾白道与黄道斜交,月行白道,不无距黄道南北之纬度。纬南者早入迟出,月当地平时,其距黄平象限不及九十度;纬北者早出迟入,月当地平时,其距黄平象限已过九十度;是则九十度之率未足为据也。于是立法以求其差,犹五星伏见距日限度有距日加减差之义也。其法以限距地平之高及月距黄道之纬,依正弧三角形法求之。盖黄道之势,随天左旋,其升降正斜,时时不同。正升正降者,京师限距地高至七十三度馀,高度大,则月纬所当之距限差转小;斜升斜降者,京师限距地高只二十六度馀,高度小,则月纬所当之距限差转大。若值月纬最大,其差可至十度有奇,此距限差之不可不立也。故依京师黄平象限距地平高度,逐度求其太阴黄道实纬度所当距限差以立表。

  设京师限距地平高度三十四度,太阴距黄道实纬度南北各五度,求距限差。如图甲为天顶,乙丙为地平,丁为黄极,甲丁乙丙为黄道经圈,戊己庚为黄道,交地平于己点,其戊点即黄平象限。戊丙为限距地高三十四度,与甲丁黄极距天顶之度等,而当戊己丙角与乙己庚角为对角,其度亦等。如月恰在正交或中交,合于黄道之己点,正当地平,则戊己为月距限九十度,若过九十度,自必在地平之下。今设月在黄道南五度,则辛壬癸为黄道距等圈,月在地平时为壬点,当于黄道之卯,其戊卯月距限乃不及九十度。又设月距黄道北五度,则子丑寅为黄道距等圈,月在地平时为丑点,当于黄道之辰,其戊辰月距限乃已过九十度,故必求其差数以加减之。法用己卯壬正弧三角形求己卯弧,此形有卯直角,有己角,当限距地高,有卯壬弧月距黄道纬度。乃以己角之正切为一率,半径为二率,卯壬弧之正切为三率,求得四率,为距限差度之正弦,检表得七度四十二分,即己卯弧为所求之距限差,而与己辰弧之度分等,盖己辰丑正弧三角形与己卯壬形同用己角,而辰丑弧月距黄道纬度,亦与卯壬等是两正弧形为相等形,故所得之己卯弧必与己辰弧相等无疑矣。既得己卯距限差,与戊己九十度相减,得八十二度十八分,即戊卯距限,而与距等圈辛壬之度相应,为月在纬南之地平限度。以己辰距限差与戊己九十度相加,得九十七度四十二分,即戊辰距限,而与距等圈子丑之度相应,为月在纬北之地平限度也。

  一率己角正切
  二率半径
  三率卯壬弧正切
  四率己卯弧正弦
  图形尚无资料
  求黄经高弧交角及月距天顶
  旧法推日食三差,原以黄平象限为本。自考成前编谓三差并生于太阴,而太阴之经纬度为白道经纬度,用白道较之用黄道为密,故求三差则按月距白平象限之度,以白道高弧交角及太阴高弧为据。后编变通其法,乃以白经高弧交角及日距天顶以求三差,而求白经高弧交角,系赤经高弧交角加减赤白二经交角而得,并不求月距白平象限之度,是法较前颇为省算。今推视差者,乃求其星月黄道同经之视距视时,故三差应由黄平象限而定也。是则其法原可仿于后编不求黄平象限而竟求黄经高弧交角之术,即黄道高弧交角之馀度。然非月距黄平象限度与地平限度相较,其月在地平之上下无由可知。故今求交角,乃先求得月距黄平象限之东西、黄平象限去地之高下、太阴距黄极之远近,然后按后编用斜弧形求赤经高弧交角日距天顶之法,则黄经高弧交角及月距天顶之度可得矣。

  设星、月黄道经度同为申宫二十六度二十二分十一秒,月距正交前四十三度四十八分五十六秒,黄白交角五度四分一十秒,黄平象限七宫十三度三十七分十七秒,限距地高六十五度三十五分三十六秒,求太阴实纬黄经高弧交角月距天顶。如图甲为天顶,甲乙丙丁为子午圈,丙丁为地平,乙为北极,戊己庚为赤道,戊为午正,己为酉正,庚为子正,卯为黄极,辛壬癸子为黄道,壬为春分,癸为夏至,午为黄道交地平之点。午未弧为九十度,其未点即黄平象限,宫度为七宫十三度三十七分十七秒。未辰弧当午角为六十五度三十五分三十六秒,即限距地高度,而与甲卯黄极距天顶之度等。巳寅丑为白道,寅为正交,寅角为黄白交角五度四分一十秒,申为太阴当黄道于酉,申寅为月距正交前白道度四十三度四十八分五十六秒,申酉为月距黄道纬度,其酉点为星月所当之黄道经度五宫二十六度二十二分十一秒,与未点黄平象限宫度相减,得未酉弧四十七度十五分六秒,为月距黄平象限西之度。乃当未卯酉角,甲申戌为高弧,卯申甲角为黄经高弧交角,甲申为月距天顶。求法,先用寅酉申正弧三角形,此形酉为直角,有寅角黄白交角,有寅申弧月距正交前白道度,求得申酉弧三度三十分二十七秒,即太阴距黄道南实纬度。与卯酉象限相加,得卯申弧九十三度三十分二十七秒,为月距黄极。次用甲卯申斜弧三角形,此形有甲卯边黄极距天顶,有申卯边月距黄极,有申卯甲角当酉未弧月距限度为所夹之角,求申角及甲申边。乃自天顶作甲亥垂弧,分为甲亥卯、甲亥申两正弧三角形。先用甲亥卯正弧三角形,此形亥为直角,有卯角,有甲卯边,求得卯亥弧五十六度十四分十五秒,为距极分边。与申卯弧月距黄极相减,得申亥弧三十七度十六分十二秒,为距月分边。次用甲亥申正弧三角形,此形亥为直角,有申亥边,兼甲亥卯正弧三角形之亥卯边及卯角。用合率比例法,求得申角五十六度二分五十一秒,即黄经高弧交角。仍以甲卯申斜弧形,用对边对角法,求得甲申弧五十三度四十三分二十四秒,即月距天顶之度也。

  图形尚无资料
  求太阴距星及凌犯视时
  太阴距地平上之高弧,自地心立算者为实高,在地面所见者为视高,其相差之分,即地半径差也。月当地平时,距天顶为九十度,其相差之数最大,而角之正弦即当地之半径。迨月上升,则距地渐高,距地愈高,则差数愈小,其所差之分,皆与本时月距天顶之正弦相应,故用比例法而得本时高下差也。夫高下既差,则有视经、视纬之别。其视经、实经之差者,东西差也;视纬、实纬之差者,南北差也。今求三差,乃依后编日食求三差法用直线三角形算之。然后编三差图乃写浑于平,今则用以浑测浑之图,求其三差,其所得之南北差,与本时太阴实纬之度相较,而得视纬。得以视纬与星纬相较,观其纬之南北而定相距之上下也。其所得之东西差,与一小时之太阴实行为比例,而得用时距视时之距分。辨其月距限之东西加减凌犯用时,而得凌犯之视时也。

  前求得道光十二年壬辰三月初六日癸丑,月距司怪第四星凌犯用时戌正二刻八分十九秒,黄经高弧交角五十六度二分五十一秒,月距天顶五十三度四十三分二十四秒,本日太阴最大地半径差六十分七秒,太阴黄道实纬度南三度三十分二十七秒,司怪第四星黄道纬度南三度十一分四十四秒,一小时太阴实行三十六分三十三秒,求星月相距分秒凌犯视时。如图甲为天顶,甲未辰巳为黄道经圈,辰午巳为地平,卯为黄极,未午辛为黄道,未点即黄平象限宫度,未辰弧即限距地高,与卯甲黄极距天顶之度等。申点为太阴,子点为司怪第四星,同当黄道于酉。其酉点即月与星之黄道经度,酉未弧即月距限西之度,子酉为星距黄道南纬度三度十一分四十四秒,申酉为太阴距黄道南实纬度三度三十分二十七秒,申
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架